您好,欢迎进入 江西氧化锆珠生产厂家官方网站

氧化锆珠免费咨询热线

19070858212(微信同号)

联系我们

江西省叁鑫新材料有限公司

电话:19070858212

联系人:黄经理

电子邮箱:sale@sxceramics.cn

办公地址:江西省萍乡市安源区经济开发区

行业资讯

当前位置:首页 >>磷酸铁锂电池低温性能的改性方法概述

磷酸铁锂电池低温性能的改性方法概述

为了寻找提高LiFePO4电池低温电化学性能的电解液体系,Zhang等尝试在电解液中加入LiBF4-LiBOB混合盐,提高了LiFePO4电池低温循环性能。值得注意的是,仅当混合盐中LiBOB的摩尔分数小于10%时,才能实现优化的性能。Zhou等将LiPF4(C2O4)(LiFOP)溶解到碳酸亚丙酯(PC)中作为LiFePO4/C电池的电解液,并与常用的LiPF6-EC电解液体系进行了对比。实验发现,当电池在低温下循环时,LIBs的第1次循环放电容量显着下降;同时,EIS数据表明LiFOP/PC电解质是通过降低LIBs内部阻抗来提高LIBs的低温循环性能。




Li等研究了两种二氟(草酸根)硼酸锂(LiODFB)电解质体系的电化学性能:LiODFB-DMS和LiODFB-SL/DMS,与常用的LiPF6-EC/DMC电解质进行电化学性能比较,发现LiODFB-SL/DMS和LiODFB-SL/DES电解质可以提高LiFePO4电池在低温下的循环稳定性能和倍率性能。EIS研究发现,LiODFB电解质有利于形成界面阻抗更低的SEI膜,促进离子的扩散与电荷的运动,从而提高LiFePO4电池的低温循环性能。因此,合适的电解液成份有利于降低电荷转移电阻,提高锂离子在电极材料界面处扩散速率,从而改善LIBs的低温性能。




电解液添加剂也是调控SEI膜成分和结构,进而提高LIBs性能方法之一。Liao等研究了FEC对低温下LiFePO4电池的放电容量和倍率性能的影响,研究发现电解液中加入体积分数2%的FEC后,LiFePO4电池在低温下表现出更高的放电容量和倍率性能。SEM和XPS显示出了SEI的形成,EIS结果表明,电解液中加入FEC能降低LiFePO4电池低温下的阻抗,所以电池性能的提升归因于SEI膜离子电导率的增加和 LiFePO4电极极化的降低。Wu等用XPS分析SEI膜,对相关机理进行了进一 步深入研究,发现当FEC参与界面成膜时,LiPF6和碳酸酯溶剂的分解被削弱,溶剂分解产生的LixPOyFz和碳酸盐物质的含量降低,从而在LiFePO4表面上生成阻抗低、结构致密的SEI膜。如图4所示,加入FEC后,LiFePO4的CV曲线表明氧化/还原峰靠拢,表明添加FEC可以降低LiFePO4电极的极化。所以,改性的SEI促进了锂离子在电极/电解质界面的迁移,由此提高了LiFePO4电极的电化学性能。

图片


图4 在 -20℃时LiFePO4电池在含有体积分数0%和10%FEC电解质中的循环伏安图



此外,Liao等研究还发现电解液中加入丁基磺内酯(BS)也具有类似的效果,即形成结构更薄、阻抗更低的SEI膜,提高锂离子通过SEI薄膜时的迁移速率,因此,BS的加入明显提高了LiFePO4电池在低温下的容量和倍率性能。




三、表面包覆导电层降低LiFePO4材料表面电阻


低温环境下,锂电池性能下降的重要原因之一是电极界面处的阻抗增加和离子扩散速率降低。LiFePO4表面包覆导电层可以降低电极材料间的接触电阻,从而提高低温下离子进出LiFePO4的扩散速率。如图5所示,Wu等使用两种碳质材料(无定形碳和碳纳米管)包覆LiFePO4(LFP@C/CNT),改性后的LFP@C/CNT具有的低温性能,在-25℃放电时容量保持率约为71.4%。EIS分析发现,这种性能的改善主要来源于LiFePO4电极材料的阻抗降低。


图片


图5 LFP@C/CNT纳米复合材料的HRTEM图(a),结构示意图(b)及SEM图




在众多的涂覆材料中,金属或金属氧化物纳米颗粒以其导电性优良,制备方法简单等优点吸引了众多科研工作者的注意。Yao等研究了CeO2涂层对LiFePO4/C电池性能的影响,实验中CeO2颗粒均匀分布在LiFePO4的表面,在低温下,锂离子在CeO2改性的LiFePO4电极材料中的嵌入/脱嵌能力以及电极动力学得到明显改善,这归因于电极材料与集流体以及颗粒之间的接触改善,以及LiFePO4-电解质界面中电荷转移的增加,这些因素降低了电极极化。




与此相似,Jin等利用V2O3的良好导电性,将其涂覆在LiFePO4表面,并测试了涂覆后样品的电化学性能。对锂离子的研究表明,良好导电性的V2O3层可以显着促进LiFePO4电极中的锂离子传输,由此V2O3改性的LiFePO4/C电池在低温环境表现出优异的电化学性能,如图6所示。

图片


图6 表面包覆不同含量V2O3的LiFePO4在低温下的循环性能



Lin等通过简单的电沉积(ED)工艺在LiFePO4材料的表面涂覆Sn纳米颗粒,并且系统地研究了Sn涂层对LiFePO4/C电池的电化学性能的影响。SEM与EIS分析表明,Sn涂层提高了LiFePO4颗粒之间的接触,在低温下材料具有更低的电荷转移电阻和更高的锂扩散速率,因此,Sn涂层提高了LiFePO4/C电池在低温下的比容量、循环性能和倍率性能。


此外,Tang等将掺杂铝的氧化锌(AZO)作为导电材料,涂覆在LiFePO4电极材料的表面。电化学测试结果表明,AZO涂覆也可以大大提高LiFePO4的倍率性能和低温性能,这是由于导电AZO包覆增加了LiFePO4材料的电导率。



四、体相掺杂降低LiFePO4电极材料体相电阻


离子掺杂可以在LiFePO4橄榄石晶格结构中形成空位,促进了锂离子在材料中的扩散速率,从而提高LiFePO4电池的电化学活性。Zhang等通过溶液浸渍工艺合成了镧和镁掺杂的Li0.99La0.01Fe0.9Mg0.1PO4/石墨气凝胶复合电极材料,该材料在低温下表现出优异的电化学性能,电化学阻抗实验结果表明,这种优异性主要归因于离子掺杂和石墨气凝胶涂层提高了材料的电子电导率。



Huang等过简单的固相反应制备了Mg和F共掺杂的LiFe0.92Mg0.08(PO4)0.99F0.03电极材料,结构和形貌表征结果表明,Mg和F可以均匀掺杂到LiFePO4晶格中而不改变电极材料的结构和粒径。与未经离子掺杂的LiFePO4材料,以及Mg或F单掺杂的LiFePO4材料相比,在低温下共掺杂的LiFePO4具有佳的电化学性能。EIS结果表明,Mg和F共掺杂增加了电子转移速率和离子传导速率,原因之一是Mg-O键的长度短于Fe-O键,从而导致锂离子扩散通道变宽,提高了LiFePO4的离子电导率。



Wang等通过液相沉淀反应合成了钐掺杂的LiFe1-xSmxPO4/C复合材料。结果表明,少量的Sm3+离子掺杂可以降低极化过电位和电荷转移电阻,从而提高LiFePO4的低温电化学性能。Cai等通过悬浮混合法制备Ti3SiC2掺杂的LiFePO4电极材料,研究发现Ti3SiC2掺杂能提高低温下锂离子在LiFePO4电极材料界面处的转移速率,因此,Ti3SiC2掺杂的LiFePO4在低温下表现出优异的倍率性能和循环稳定性。Ma等制备了Li3V2(PO4)3掺杂的LiFePO4电极材料(LFP-LVP),EIS结果表明,LFP-LVP电极材料具有更低的电荷转移电阻,电荷转移加速提高了LiFePO4/C电池的低温电化学性能。



五、结论及展望


本文简要概述了提高磷酸铁锂电池低温性能的4种方法:脉冲电流生热;电解液改性表面SEI膜;表面包覆提高LiFePO4材料表面电导率;体相离子掺杂增进LiFePO4材料电导率。低温环境下,LiFePO4电池中的界面电阻增加以及锂沉积而诱导的SEI膜生长是导致电池性能下降的主要原因,因此,提升其低温性能的关键在于安全稳定快速升温或降低阻抗。




脉冲电流可以加速电解液中电荷的运动而产生热量,从而使LIBs快速升温。使用低阻抗的电解液体系或成膜添加剂有利于形成致密超薄高离子电导率的SEI膜,提高LiFePO4电极-电解液界面反应阻力,降低低温导致的离子扩散减缓的负面影响。LiFePO4材料的改性主要有两种方式:表面包覆与离子掺杂。表面包覆LiFePO4电极材料有利于提高电极材料的表面电导率,减小接触电阻;而离子掺杂有利于在晶格结构中形成空位和变价,拓宽离子扩散通道,促进锂离子和电子在材料中的迁移率。因此,基于上述分析,提高磷酸铁锂电池低温性能的关键在于降低电池内部的阻抗。


19070858212(微信同号)